Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34831374

RESUMO

Metabolic syndrome increases the risk for cardiovascular disease including metabolic cardiomyopathy that may progress to heart failure. The decline in mitochondrial metabolism is considered a critical pathogenic mechanism that drives this progression. Considering its cardiac specificity, we hypothesized that miR 208a regulates the bioenergetic metabolism in human cardiomyocytes exposed to metabolic challenges. We screened in silico for potential miR 208a targets focusing on mitochondrial outcomes, and we found that mRNA species for mediator complex subunit 7, mitochondrial ribosomal protein 28, stanniocalcin 1, and Sortin nexin 10 are rescued by the CRISPR deletion of miR 208a in human SV40 cardiomyocytes exposed to metabolic challenges (high glucose and high albumin-bound palmitate). These mRNAs translate into proteins that are involved in nuclear transcription, mitochondrial translation, mitochondrial integrity, and protein trafficking. MiR 208a suppression prevented the decrease in myosin heavy chain α isoform induced by the metabolic stress suggesting protection against a decrease in cardiac contractility. MiR 208a deficiency opposed the decrease in the mitochondrial biogenesis signaling pathway, mtDNA, mitochondrial markers, and respiratory properties induced by metabolic challenges. The benefit of miR 208a suppression on mitochondrial function was canceled by the reinsertion of miR 208a. In summary, miR 208a regulates mitochondrial biogenesis and function in cardiomyocytes exposed to diabetic conditions. MiR 208a may be a therapeutic target to promote mitochondrial biogenesis in chronic diseases associated with mitochondrial defects.


Assuntos
MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Estresse Fisiológico/genética , Adulto , Biomarcadores/metabolismo , Diabetes Mellitus/genética , Humanos , MicroRNAs/genética , Modelos Biológicos , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo
2.
Dev Psychol ; 57(2): 302-308, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33346675

RESUMO

Ethnic-racial identity (ERI) formation is an important developmental task. Although families are a primary context for ERI socialization, little is known about siblings' role. Accordingly, we applied the Actor-Partner Interdependence Model to longitudinal data from 2 siblings to examine the links between siblings' ERI exploration, resolution, and affirmation. Participants were Mexican-origin mothers, fathers, and 2 siblings (older siblings Mage = 20.65 years; younger siblings Mage = 17.72 years) from 246 families in Arizona who were interviewed on 2 occasions across 2 years. Siblings' ERI exploration in late adolescence positively predicted young adult ERI, accounting for mothers' and fathers' ERIs. For resolution, the sibling (i.e., partner) effect was moderated by sibling gender constellation, such that the sibling effect emerged only for same-sex dyads. For affirmation, the sibling effect emerged for older but not younger siblings. These findings highlight the need to understand siblings' role in ERI and to expand research on family socialization of ERI beyond parents. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Comportamento do Adolescente , Irmãos , Adolescente , Etnicidade , Feminino , Humanos , Estudos Longitudinais , Socialização , Adulto Jovem
3.
Addict Behav ; 94: 16-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30824126

RESUMO

Mediating mechanisms are important components of substance use research, as many substance use interventions work by targeting mediating variables. One issue that is common in substance use research is the presence of many responses of zero in a count variable that is the primary outcome of interest, such as number of drinks per week or number of substances used in the past month. The goal of this paper is to highlight the unique challenges that substance use researchers face when conducting mediation analysis with a zero-inflated count outcome. In this paper, we first describe the models that are commonly used for zero-inflated count data, and when it is appropriate to use them. We then describe general mediation analysis and summarize the small body of work that has focused on mediation for count and zero-inflated count outcomes. We identify the main issue of computing the mediated effect when outcomes are zero-inflated, namely, that the path leading to the zero-inflated count outcome (or mediator) is modeled in two parts. We then provide two examples of mediation models with different conclusions that have zero-inflated count outcomes using adolescent substance use data and define the issues that arise when assessing mediation for each. Finally, we describe the directions in which we must target future methodological research to create accessible solutions for handling mediation with zero-inflated count data in substance use research.


Assuntos
Distribuição Binomial , Interpretação Estatística de Dados , Modelos Estatísticos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Adolescente , Estudos Epidemiológicos , Humanos , Distribuição de Poisson
4.
Redox Biol ; 20: 107-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300862

RESUMO

Dysfunction in mitochondrial oxidative phosphorylation (OXPHOS) underlies a wide spectrum of human ailments known as mitochondrial diseases. Deficiencies in complex I of the electron transport chain (ETC) contribute to 30-40% of all cases of mitochondrial diseases, and leads to eye disease including optic nerve atrophy and retinal degeneration. The mechanisms responsible for organ damage in mitochondrial defects may include energy deficit, oxidative stress, and an increase in the NADH/NAD+ redox ratio due to decreased NAD+ regeneration. Currently, there is no effective treatment to alleviate human disease induced by complex I defect. Photoreceptor cells have the highest energy demand and dependence on OXPHOS for survival, and the lowest reserve capacity indicating that they are sensitive to OXPHOS defects. We investigated the effect of mitochondrial OXPHOS deficiency on retinal photoreceptors in a model of mitochondrial complex I defect (apoptosis inducing factor, AIF-deficient mice, Harlequin mice), and tested the protective effect of a mitochondrial redox compound (methylene blue, MB) on mitochondrial and photoreceptor integrity. MB prevented the reduction in the retinal thickness and protein markers for photoreceptor outer segments, Muller and ganglion cells, and altered mitochondrial integrity and function induced by AIF deficiency. In rotenone-induced complex I deficient 661 W cells (an immortalized mouse photoreceptor cell line) MB decreased the NADH/NAD+ ratio and oxidative stress without correcting the energy deficit, and improved cell survival. MB deactivated the mitochondrial stress response pathways, the unfolding protein response and mitophagy. In conclusion, preserving mitochondrial structure and function alleviates retinal photoreceptor degeneration in mitochondrial complex I defect.


Assuntos
Fator de Indução de Apoptose/deficiência , Oxirredução , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Animais , Biomarcadores , Linhagem Celular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , Azul de Metileno/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Estresse Fisiológico
6.
Genome Announc ; 5(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798169

RESUMO

We describe the genome sequences of three closely related mycobacteriophages, Kerberos, Pomar16, and StarStuff, isolated at similar times but from geographically distinct regions. All three genomes are similar to those of other subcluster A2 phages, such as L5 and D29, are temperate, and have siphoviral virion morphologies.

7.
Nat Microbiol ; 2: 16251, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067906

RESUMO

Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.


Assuntos
Micobacteriófagos/fisiologia , Mycobacterium smegmatis/virologia , Mycobacterium tuberculosis/virologia , Prófagos/fisiologia , DNA Viral/genética , Variação Genética , Genoma Bacteriano , Genoma Viral , Ligases/genética , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Filogenia , Prófagos/enzimologia , Prófagos/genética , Proteínas Virais/genética
8.
Cardiovasc Res ; 107(4): 453-65, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101264

RESUMO

AIMS: Cardiomyopathy is a major complication of diabetes. Our study was aimed to identify the sites of mitochondrial dysfunction and delineate its consequences on mitochondrial metabolism in a model of type 1 diabetes. METHODS AND RESULTS: Diabetes was induced by streptozotocin injection to male Lewis rats. We found a decrease in mitochondrial biogenesis pathway and electron transport chain complex assembly that targets Complex I. Oxidation of Complex II and long-chain fatty acid substrates support the electron leak and superoxide production. Mitochondrial defects do not limit fatty acid oxidation as the heart's preferred energy source indicating that the diabetic heart has a significant reserve in Complex I- and II-supported ATP production. Both mitochondrial fatty acid oxidation and Complex I defect are responsible for increased protein lysine acetylation despite an unchanged amount of the NAD(+)-dependent mitochondrial deacetylase sirt3. We quantitatively analysed mitochondrial lysine acetylation post-translational modifications and identified that the extent of lysine acetylation on 54 sites in 22 mitochondrial proteins is higher in diabetes compared with the same sites in the control. The increased lysine acetylation of the mitochondrial trifunctional protein subunit α may be responsible for the increased fatty acid oxidation in the diabetic heart. CONCLUSION: We identified the specific defective sites in the electron transport chain responsible for the decreased mitochondrial oxidative phosphorylation in the diabetic heart. Mitochondrial protein lysine acetylation is the common consequence of both increased fatty acid oxidation and mitochondrial Complex I defect, and may be responsible for the metabolic inflexibility of the diabetic heart.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Acetilação , Animais , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Coração/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Lisina/metabolismo , Masculino , Oxirredução , Ratos Endogâmicos Lew
9.
Mol Cancer Ther ; 13(10): 2288-302, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25122066

RESUMO

Docetaxel chemotherapy remains a standard of care for metastatic castration-resistant prostate cancer (CRPC). Docetaxel modestly increases survival, yet results in frequent occurrence of side effects and resistant disease. An alternate chemotherapy with greater efficacy and minimal side effects is needed. Acquisition of metabolic aberrations promoting increased survival and metastasis in CRPC cells includes constitutive activation of Akt, loss of adenosine monophosphate-activated protein kinase (AMPK) activity due to Ser-485/491 phosphorylation, and overexpression of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMG-CoAR). We report that combination of simvastatin and metformin, within pharmacologic dose range (500 nmol/L to 4 µmol/L simvastatin and 250 µmol/L to 2 mmol/L metformin), significantly and synergistically reduces C4-2B3/B4 CRPC cell viability and metastatic properties, with minimal adverse effects on normal prostate epithelial cells. Combination of simvastatin and metformin decreased Akt Ser-473 and Thr-308 phosphorylation and AMPKα Ser-485/491 phosphorylation; increased Thr-172 phosphorylation and AMPKα activity, as assessed by increased Ser-79 and Ser-872 phosphorylation of acetyl-CoA carboxylase and HMG-CoAR, respectively; decreased HMG-CoAR activity; and reduced total cellular cholesterol and its synthesis in both cell lines. Studies of C4-2B4 orthotopic NCr-nu/nu mice further demonstrated that combination of simvastatin and metformin (3.5-7.0 µg/g body weight simvastatin and 175-350 µg/g body weight metformin) daily by oral gavage over a 9-week period significantly inhibited primary ventral prostate tumor formation, cachexia, bone metastasis, and biochemical failure more effectively than 24 µg/g body weight docetaxel intraperitoneally injected every 3 weeks, 7.0 µg/g/day simvastatin, or 350 µg/g/day metformin treatment alone, with significantly less toxicity and mortality than docetaxel, establishing combination of simvastatin and metformin as a promising chemotherapeutic alternative for metastatic CRPC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Metformina/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Sinvastatina/farmacologia , Animais , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/farmacologia , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Masculino , Metformina/administração & dosagem , Camundongos , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/patologia , Sinvastatina/administração & dosagem
10.
mBio ; 5(1): e01051-13, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24496795

RESUMO

UNLABELLED: Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE: Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Genômica/educação , Microbiologia/educação , Adulto , Feminino , Humanos , Masculino , Estudantes , Adulto Jovem
11.
J Biol Chem ; 289(9): 5914-24, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24407292

RESUMO

The mammalian heart, the body's largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/patologia , Proteínas Nucleares/genética , Oxirredução , Fatores de Transcrição/genética
12.
J Virol ; 88(5): 2461-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335314

RESUMO

UNLABELLED: Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE: The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.


Assuntos
Família Multigênica , Micobacteriófagos/classificação , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , RNA de Transferência/genética , RNA Viral , Composição de Bases , Sequência de Bases , Códon , Sequência Conservada , Ordem dos Genes , Tamanho do Genoma , Genoma Viral , Sequências Repetidas Invertidas , Lisogenia/genética , Micobacteriófagos/ultraestrutura , Fases de Leitura Aberta , Filogenia , RNA de Transferência/química , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
13.
Diabetes ; 61(8): 2074-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22586586

RESUMO

Mitochondrial reactive oxygen species (ROS) cause kidney damage in diabetes. We investigated the source and site of ROS production by kidney cortical tubule mitochondria in streptozotocin-induced type 1 diabetes in rats. In diabetic mitochondria, the increased amounts and activities of selective fatty acid oxidation enzymes is associated with increased oxidative phosphorylation and net ROS production with fatty acid substrates (by 40% and 30%, respectively), whereas pyruvate oxidation is decreased and pyruvate-supported ROS production is unchanged. Oxidation of substrates that donate electrons at specific sites in the electron transport chain (ETC) is unchanged. The increased maximal production of ROS with fatty acid oxidation is not affected by limiting the electron flow from complex I into complex III. The maximal capacity of the ubiquinol oxidation site in complex III in generating ROS does not differ between the control and diabetic mitochondria. In conclusion, the mitochondrial ETC is neither the target nor the site of ROS production in kidney tubule mitochondria in short-term diabetes. Mitochondrial fatty acid oxidation is the source of the increased net ROS production, and the site of electron leakage is located proximal to coenzyme Q at the electron transfer flavoprotein that shuttles electrons from acyl-CoA dehydrogenases to coenzyme Q.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Túbulos Renais Proximais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Masculino , Mitocôndrias/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Ubiquinona/metabolismo
14.
J Biol Chem ; 286(7): 5895-904, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21126961

RESUMO

Calcium levulinate (4-ketopentanoate) is used as an oral and parenteral source of calcium. We hypothesized that levulinate is converted in the liver to 4-hydroxypentanoate, a new drug of abuse, and that this conversion is accelerated by ethanol oxidation. We confirmed these hypotheses in live rats, perfused rat livers, and liver subcellular preparations. Levulinate is reduced to (R)-4-hydroxypentanoate by a cytosolic and a mitochondrial dehydrogenase, which are NADPH- and NADH-dependent, respectively. A mitochondrial dehydrogenase or racemase system also forms (S)-4-hydroxypentanoate. In livers perfused with [(13)C(5)]levulinate, there was substantial CoA trapping in levulinyl-CoA, 4-hydroxypentanoyl-CoA, and 4-phosphopentanoyl-CoA. This CoA trapping was increased by ethanol, with a 6-fold increase in the concentration of 4-phosphopentanoyl-CoA. Levulinate is catabolized by 3 parallel pathways to propionyl-CoA, acetyl-CoA, and lactate. Most intermediates of the 3 pathways were identified by mass isotopomer analysis and metabolomics. The production of 4-hydroxypentanoate from levulinate and its stimulation by ethanol is a potential public health concern.


Assuntos
Cálcio/farmacologia , Inibidores Enzimáticos/farmacocinética , Ácidos Levulínicos/farmacocinética , Fígado/enzimologia , Ácidos Pentanoicos/metabolismo , Transtornos Relacionados ao Uso de Substâncias , Animais , Depressores do Sistema Nervoso Central/farmacologia , Citoplasma/enzimologia , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Etanol/farmacologia , Ácidos Levulínicos/efeitos adversos , Ácidos Levulínicos/farmacologia , Masculino , Mitocôndrias Hepáticas/enzimologia , Oxirredução , Ácidos Pentanoicos/efeitos adversos , Perfusão , Ratos , Ratos Sprague-Dawley
15.
J Gerontol A Biol Sci Med Sci ; 65(11): 1157-64, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20801909

RESUMO

We measured the loss of cardiac mitochondrial function related to aging in males of three rat strains presenting with different longevity and aging phenotypes: the Fischer 344 (F344), the Brown Norway (BN), and the hybrid F344×BN. The F344 rat has a short life span and a ∼45% decrease in coupled mitochondrial oxidation in the cardiac permeabilized fibers from the old rats compared with the young rats. Citrate synthase activity in the permeabilized fibers (mitochondrial content) did not change significantly with aging. The BN live longer compared with the F344 and have a 15%-18% loss of mitochondrial respiration in the aged rats compared with the young rats. The differences are not significant. In hybrids, more resistant to aging than are the BN and the F344, mitochondrial function is preserved during aging. The difference in longevity of the different strains is correlated with mitochondrial dysfunction in the heart, suggesting the importance of mitochondria in cardiac aging.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias Cardíacas/fisiologia , Envelhecimento/metabolismo , Análise de Variância , Animais , Citrato (si)-Sintase/metabolismo , Masculino , Mitocôndrias Cardíacas/enzimologia , Fenótipo , Ratos , Ratos Endogâmicos F344 , Estatísticas não Paramétricas
16.
Cardiovasc Res ; 80(1): 30-9, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18710878

RESUMO

AIMS: Mitochondrial dysfunction is a major factor in heart failure (HF). A pronounced variability of mitochondrial electron transport chain (ETC) defects is reported to occur in severe acquired cardiomyopathies without a consistent trend for depressed activity or expression. The aim of this study was to define the defect in the integrative function of cardiac mitochondria in coronary microembolization-induced HF. METHODS AND RESULTS: Studies were performed in the canine coronary microembolization-induced HF model of moderate severity. Oxidative phosphorylation was assessed as the integrative function of mitochondria, using a comprehensive variety of substrates in order to investigate mitochondrial membrane transport, dehydrogenase activity and electron-transport coupled to ATP synthesis. The supramolecular organization of the mitochondrial ETC also was investigated by native gel electrophoresis. We found a dramatic decrease in ADP-stimulated respiration that was not relieved by an uncoupler. Moreover, the ADP/O ratio was normal, indicating no defect in the phosphorylation apparatus. The data point to a defect in oxidative phosphorylation within the ETC. However, the individual activities of ETC complexes were normal. The amount of the supercomplex consisting of complex I/complex III dimer/complex IV, the major form of respirasome considered essential for oxidative phosphorylation, was decreased. CONCLUSIONS: We propose that the mitochondrial defect lies in the supermolecular assembly rather than in the individual components of the ETC.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Cães , Transporte de Elétrons , Hemodinâmica , Proteínas de Membrana Transportadoras/metabolismo , Miopatias Mitocondriais/metabolismo , Oxirredutases/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 292(3): H1498-506, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17114240

RESUMO

Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheterization. Subsarcolemmal and interfibrillar mitochondria were isolated from the LV. Heart failure resulted in impaired LV contractile function [decreased percent fractional shortening and peak rate of LV pressure rise and fall (+/-dP/dt)] and remodeling (increased end-diastolic and end-systolic dimensions) in HF compared with sham. No further progression of LV dysfunction was evident in HF + Sat. Mitochondrial state 3 respiration was increased in HF + Sat compared with HF despite elevated myocardial ceramide. Activities of ETC complexes II and IV were elevated in HF + Sat compared with HF and sham. High saturated fat feeding following coronary artery ligation was associated with increased oxidative phosphorylation and ETC complex activities and did not adversely affect LV contractile function or remodeling, despite elevations in myocardial ceramide.


Assuntos
Gorduras na Dieta , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/fisiopatologia , Função Ventricular Esquerda/fisiologia , Animais , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Transporte de Elétrons , Mitocôndrias Cardíacas/efeitos dos fármacos , Fosforilação Oxidativa , Ratos , Disfunção Ventricular Esquerda/fisiopatologia
18.
Mech Ageing Dev ; 127(12): 917-21, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17101170

RESUMO

Interfibrillar mitochondria (IFM) of the heart in aged Fischer 344 rats show a biochemical defect which might be reflected in their morphology. We examined by high resolution scanning electron microscopy over 5500 mitochondria to determine if a concomitant structural alteration existed. This methodology provides a means of examining mitochondrial cristae in three dimensions. Cristae of in situ subsarcolemmal mitochondria (SSM) and of IFM in both 6- and 24-month-old Fischer rats are predominantly lamelliform. When isolated, these organelles, whether of SSM or IFM origin, display enhanced heterogeneity, but they have similar crista morphology irrespective of the age of the rat. Crista configuration does not play a major role in age-related cardiac mitochondrial defects.


Assuntos
Envelhecimento/patologia , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/ultraestrutura , Sarcolema/ultraestrutura , Animais , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Endogâmicos F344
19.
Am J Physiol Heart Circ Physiol ; 289(2): H868-72, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15821034

RESUMO

To determine whether there are structural differences in two topologically separated, biochemically defined mitochondrial populations in rat heart myocytes, the interior of these organelles was examined by high-resolution scanning electron microscopy. On the basis of a count of 159 in situ subsarcolemmal mitochondria (SSM, i.e., those that directly abut the sarcolemma), these organelles possess mainly lamelliform cristae (77%), whereas the cristae in in situ interfibrillar mitochondria (IFM, i.e., those situated between the myofibrils, n = 300) are mainly tubular (55%) or a mixture of tubular and lamelliform (24%). Isolated SSM (n = 374), similar to their in situ counterparts, have predominantly lamelliform cristae (75%). The proportions of crista types in isolated IFM (n = 337) have been altered, with only 20% of these organelles retaining exclusively tubular cristae, whereas 58% are mixed; of the latter, lamelliform cristae predominate. This finding suggests that, in contrast to SSM, the cristae in IFM are structurally plastic, changing during isolation. These observations on >1,000 organelles provide the first quantitative morphological evidence for definitive differences between the two populations of cardiac mitochondria.


Assuntos
Mitocôndrias Cardíacas/ultraestrutura , Animais , Microscopia Eletrônica de Varredura/métodos , Mitocôndrias Cardíacas/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Am J Physiol Heart Circ Physiol ; 287(4): H1538-43, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15191896

RESUMO

Recent human and animal studies have demonstrated that in severe end-stage heart failure (HF), the cardiac muscle switches to a more fetal metabolic phenotype, characterized by downregulation of free fatty acid (FFA) oxidation and an enhancement of glucose oxidation. The goal of this study was to examine myocardial substrate metabolism in a model of moderate coronary microembolization-induced HF. We hypothesized that during well-compensated HF, FFA oxidation would predominate as opposed to a more fetal metabolic phenotype of greater glucose oxidation. Cardiac substrate uptake and oxidation were measured in normal dogs (n = 8) and in dogs with microembolization-induced HF (n = 18, ejection fraction = 28%) by infusing three isotopic tracers ([9,10-(3)H]oleate, [U-(14)C]glucose, and [1-(13)C]lactate) in anesthetized open-chest animals. There were no differences in myocardial substrate metabolism between the two groups. The total activity of pyruvate dehydrogenase, the key enzyme regulating myocardial pyruvate oxidation (and hence glucose and lactate oxidation) was not affected by HF. We did not observe any difference in the activity of carnitine palmitoyl transferase I (CPT-I) and its sensitivity to inhibition by malonyl-CoA between groups; however, malonyl-CoA content was decreased by 22% with HF, suggesting less in vivo inhibition of CPT-I activity. The differences in malonyl-CoA content cannot be explained by changes in the Michaelis-Menten constant and maximal velocity for malonyl-CoA decarboxylase because neither were affected by HF. These results support the concept that there is no decrease in fatty acid oxidation during compensated HF and that the downregulation of fatty acid oxidation enzymes and the switch to carbohydrate oxidation observed in end-stage HF is only a late-stage phenomenon.


Assuntos
Ácidos Graxos não Esterificados/farmacocinética , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Animais , Glicemia/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Cães , Regulação para Baixo , Ácidos Graxos não Esterificados/sangue , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Ácido Láctico/sangue , Malonil Coenzima A/metabolismo , Ácido Oleico/farmacocinética , Oxirredução , Complexo Piruvato Desidrogenase/metabolismo , Índice de Gravidade de Doença , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...